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ABSTRACT 

A method of structural synthesis is presented using a recursive computational 

process. A structure can be modeled entirely linearly, with localized nonlinearities 

included as synthesized forces. The method allows retention of only the degrees of 

freedom (DOF) of interest, including, at a minimum, the DOF at which nonlinearities are 

applied. The method is illustrated using an n- degree of freedom finite element model of 

a simple structure. The method is shown to adjust the response of the system based on 

addition of a nonlinear base isolator. Finally, the method is compared to MATLAB's 

ODE45 function as a measure of accuracy and efficiency. The method is theoretically 

exact, and results in order of magnitude decreases in computational time for modification 

analysis. 
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I. INTRODUCTION 

In the wake of recent devastating earthquakes in the Los Angeles and San 

Francisco areas, as well as Mexico and Japan, has come heightened interest in earthquake 

protection systems for structures in high-risk areas. Successful implementation of such 

systems could result in enormous savings in terms of both dollars and lives. The goal is 

not merely to design a building that can withstand the forces of an earthquake, but rather 

to devise a method to ensure that both the building and its contents survive intact. 

Simply strengthening the building would still allow the vibrational energy to be 

transmitted to the contents, resulting in extensive internal damage. Therefore, current 

methods focus on systems that effectively isolate the entire building. These methods 

consist of spring-damper systems installed beneath the building to absorb as much 

earthquake energy as possible. 

Of critical importance is the task of matching the isolator to the structure in terms 

of spring rate and damping coefficient, both of which are generally nonlinear. The design 

of these systems depends upon the mass, damping, and stiffness of the structure, all of 

which can be difficult to determine in a complex structure, as well as the frequency of the 

ground motion. Performing actual vibrational experiments on buildings is at best cost 

prohibitive, and, in many cases, impossible. In lieu of physical test data, finite element 

(FE) techniques can be used to construct and analyze mathematical models of structures. 

Following an analysis of the structure model, the FE process can then be used to design 



an appropriate isolation system and test the response of the modified structure. However, 

the computational cost of conducting such an analysis can be immense for a complex 

structure, and this cost is compounded when changing or refining an isolator design, as 

the entire process is traditionally repeated each time the system is modified. Two current 

methods of FE analysis include a standard recursive scheme and the more recently 

developed nonlinear transient structural synthesis method. Each of these methods has 

certain advantages and disadvantages which will be discussed. Finally, a new method 

will be described which attempts to combine the attributes of both. 



II. EQUATIONS OF MOTION OF AN N-STORY BUILDING 

While the methods discussed in this thesis can be applied to a wide class of finite 

element problems, they will be demonstrated for analysis of building response to 

earthquake excitation. As an example, the following derivation is presented for a simple 

four-story building. The procedure is easily extended to any number of stories. A FE 

model of a large and complex building would typically contain tens of thousands of DOF, 

which is a source of much computational expense. 

In modeling buildings, the mass is commonly considered to be concentrated in the 

floor of each section, while the walls are treated as massless columns providing lateral 

stiffness [Ref. 1]. Referring to Figure (1), the equations of motion for each floor can be 

seen to be 

m^ +(c, +c2)ij -c2x2 +(kl + k2)xl -k2x2 =/, 

m2X2 —C2XX +(C2 +C3)x2 — C3X3 — £2*1 +(*2 + %)*2 ~*3*3 = fl 

m3x3 ~ C3X2 + (c3 + CA )x3 ~ C4X4 ~ *3*2 + (*3 + *4 )x3 ~ *4*4 = J3 

WI4X4 — C4X3 + C4X4 — Ä4X3 +Ä4X4 = J 4 

These equations can be written in matrix form as 
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or, more compactly, 

[MM+[CM+MM={F} (2.1) 

Figure 1 

Thus, for an «-story building, the mass and stiffness will be represented by nxn 

matrices. For the sake of simplicity in demonstrating the method, the model has been 

represented as one degree of freedom per story. In practice, there may be hundreds of 

DOF per story, but the procedure remains the same. Ground motion is represented as 



y(t). The force transmitted through the isolator is generally nonlinear and is a function of 

displacement and velocity across the isolator. 





III. NONLINEAR TIME DOMAIN STRUCTURAL SYNTHESIS 

A. BACKGROUND 

Structural synthesis refers to substructure coupling and structural modification in 

a finite element model. This discussion will provide an overview of the structural 

modification aspect of a recently developed structural synthesis method, based on 

References [2,3]. Current work in the area of structural synthesis centers on use of a time 

domain formulation. The goal of the synthesis method is to reduce the computational 

burden associated with analyzing the effect of modifications to a structure. Without the 

use of synthesis, the entire finite element model must be resolved for every variation in 

the structure, involving potentially huge matrix operations. With structural synthesis, the 

entire model is solved only once, omitting any nonlinearities (such as base isolators) in 

the system. This solution is relatively simple as it is entirely linear. The nonlinearities 

are accounted for as forces applied at the c-set DOF due to relative displacement and 

velocity across the isolator. In reanalysis, only the cset DOF must be retained, using the 

original transition matrices from the baseline model. In this way, the computational 

burden is drastically reduced, especially for successive solutions as in an opthmzation 

routine. 

B. THEORY 

For purposes of finite element analysis, a structure's physical coordinates are 

represented as a vector {x}, which is partitioned into {xc} and {xf}, with the subscript c 



referring to connection coordinates, or those coordinates at which the structure is to be 

modified, and the subscript i referring to internal coordinates, where no modification 

takes place. In terms of the convolution integral, the dynamic response of the system is 

*,-(0l    f*,-(0 
*c(0l    MO I Hu(t-T)     Hte(t-T) 

Hci(t-z)   Hcc(t-r) 
dx 

(3-1) 

In structural modification, the interior coordinates may experience externally 

applied forces, while the connection coordinates may experience both externally applied 

and modification forces. Thus, the force vector can be represented as 

TOl    KM   , [° 
FC(J)\     lF/(r)J    \Fl{T)\ (3.2) 

In Equation (3.2) and throughout this discussion, the superscript e refers to externally 

applied forces, while the superscript * denotes a quantity associated with the 

modification. Including these synthesized forces, the total response becomes 

xc(t) *c(0jA B ~H„(f-T)    Hic(t-r) 
Hci(t-r)   Hcc(t-r) k(r)J    K(r)J 

\dx 

(3-3) 

which can be rewritten as 

*C(0J     K(0J    \Hj!-T)feK )V 
(3-4) 

The synthesis forces for linear structural modification can be written generally as 

kc^-k'fewl-kkcol-kkc)} (3-5) 
Applying Equation (3.5) to the second row of Equation (3.4) results in 



(3.6) 

which is a nonstandard nonhomogeneous Volterra integral equation of the second kind. 

The goal is to solve Equation (3.6) for {xc (t)}, which is the transient response of the 

modified system. In order to obtain a numerical solution, Equation (3.6) can be 

integrated by parts twice and reduced as in Reference [3], resulting in 

l/]+fc(0)kfe«}= 

{xc(t)}~ $Hcc(t- r)Jl/']+ [Hcc(t - r)lc']+ [Hcc(t- T^few^r 

Equation (3.7) can then be solved numerically for {xc (t)}. 

(3.7) 
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IV.    STANDARD RECURSIVE METHOD 

Recalling Equation (2.1), we have the governing differential equations for the 

motion of an w-story building: 

Mx}+[Cp}+W,}={F} 

Multiplying by [A/
-1

] gives 

Redefining {*} as the state vector \. L we have, in state-space notation, the differential 

equation for an n^-order linear time-invariant continuous-time system: 

{*(/)}= [4*«}+[4/(0} (4.2) 

M- 

where x(t) is the n-dimensional state vector andfft) is the r-dimensional input vector 

(dropping brackets for clarity). A and B are nxn and nxr matrices of constant coefficients, 

respectively. In order to derive the response of the system, we multiply both sides of 

Equation (4.2) by the matrix K(t), which will be defined later: 

K(f)x{t) = K{t)Ax{i) + K(f)Bf(t) (4 3) 

Recognizing that, by applying the chain rule, 

dt 

we see that 

[K(t)x(t)]=K(t)x(t) + K(t)x(t) 

11 



j.[K(t)x(t)]- K(t)x(t) = K(t)Mt) + K(t)Bf(t) 
(4.4) 

Next, we define K(t) such that 

k(t) = -AK(t) (4.5) 

which has the solution 

K{t) = e~A'K(0) (4.6) 

We arbitrarily choose 

*«>) = / (4.7) 

where /represents the identity matrix, so that 

K(t) = e~Al 
(4.8) 

Recognizing the commutability of K(t) and A, Equation 4.4 can be reduced to 

^-[K{t)xit))= K(t)Bf(t) 
at (4.9) 

Integrating, 

K(t)x(t) = K(0)x(0)+ JK(T)Bf(r)dT 
0 

t 

= X(0)+JK(T)Bf(T)dT 
0 (4.10) 

Premultiplying by K~l(t), we obtain the response 

x(i) = K-l(t)x(0) + K~\t) \K(r)Bf{T)dT 
0 

12 



= ¥«*(()) + JV(* - r)Bf{r)dr (4.11) 

where 

>-r> = ^('-r) V{t-r) = e<- (412) 

is known as the transition matrix. Thus the state at a particular sampling time t is given 

by 

x(t) = eA'x(Q) + jeA('-r)Bf(z)dT 

(4.13) 

which is a Volterra Integro-Differential Equation (VIDE) of the second kind. 

At the following sampling time, the state is given by 

t+to 

x(t + At) = eA{,+^x(0) +  y^-r)Bf(r)dT 

= e AM 
M l+Al 

eA'x(0)+ ^eA{kT-T)Bf(T)dT +   L41-'*^ Bf(r)dr 

l+Al 

= eAAl {x(t)}+  \eA^-T)Bf(r)dr (4.14) 

If the sampling period At is sufficiently small, and the input vector f(t) is assumed to be 

constant over each time interval t: t + At, the second integral on the right hand side can be 

approximated as 

l+Al 
J eA>^-r)Bf{j)dT s      j>('+A,-r)rfr 

l+Al 

5/(0 
(4.15) 

Defining a = t + At - z, the integral on the right hand side of Equation (4.15) reduces to 

13 



J+V'+A,-r)</r= [eA°(-d<r) = ^ eA° do 

= I   (I + Ao + + ...)da 

IA     A(At)2     A2 (At)* 
= IAt+ +—^^- + ... 

2! 3! 

= A~l 
( J/A.    A2(At)2     A3 (At)3      ^ 
A(At) + ——— + —i-^- +... 

2! 3! 
(4.16) 

So, from Equation (4.14), we can obtain the discrete-time state vector sequence 

x(t + At) = V(At)x(t) + T(At)f(t) (4.17) 

where 

^(A0 = ^A'and T(At) = A-l{eA&'-l)B 

Equation (4.18) represents a recursive expression which will solve for the state vector {x} 

at each sampling time. 

The above derivation is an overview ofthat presented in Reference [4] and results 

in a recursive solution that has several desirable properties.  iPand .Tare constant 

matrices, and so need be computed only once for any given model. Additionally, each 

x(t) and f(t) can be discarded after x(t + At) has been computed. However, all DOF must 

be retained for the solution. The A matrix above can be seen to be of size 2n x 2n, where 

n is the number of DOF. Since formation of iPand /"involve an exponential of A and the 

inverse of A, respectively, the computational requirements can be enormous for a large 

system. Additionally, inclusion of a single nonlinearity (such as a base isolator) renders 

14 



the entire model nonlinear, and so must be calculated as such. 

15 
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V. RECURSIVE SYNTHESIS 

A. OVERVIEW 

The goal of the recursive synthesis method developed in this thesis is to 

incorporate the benefits of both methods previously discussed. Specifically, it was 

desired that the method function while retaining only the c-set DOF, as well as only 

retaining the solution for one previous time step. The basis of the method is a transition 

matrix derived from the second-order differential equations, as opposed to the previously 

used transition matrices based on the homogeneous solution to the associated first-order 

differential equation. Two formulations of this method were developed, one using a real 

modal approach, the other complex. 

Again, we begin with Equation (2.1), the governing differential equation for a 

spring - mass system. 

Natural frequencies are independent of damping, so we can assume the following 

solution to the above equation: 

to-Wc.e* (5-1) 

where Cj is an arbitrary constant of integration (not related to the damping coefficient.) 

Taking derivatives, 

{X}=-{</>}G>
2
C^°< (52) 

Substituting into Equation (2.1), 

17 



or 

- [Af^Jö'CV* + [K\<f>)Cxe
ja' = 0 

t^]-^2M^jc1^=o (5.3) 

Now, we want to solve the above system. Realizing that e"* * 0 for finite t, and that if 

Cj is zero we have a trivial solution, we see that 

h-^[A/fc = 0 (54) 

The solution to the above eigen system yields [o2\, the diagonal matrix of natural 

frequencies, and [<J>], the modal transformation matrix,  [<J>] is used to transform from 

physical coordinates to modal coordinates, as follows: 

[M]=[OFMO] 

(5.4.a) 

(5.4.b) 

(5.4.c) 

(5.4.d) 

Transforming Equation (2.1) to modal coordinates, 

&}- 
"\ "\ 

2£»„ tih col 
\ \ 

{q}=M{F}^} (5.5) 

Both the real and complex formulations are based on the above modal differential 

equation. 

18 



B.  REAL FORMULATION 

From Equation (5.5), the modal differential equation for the i*h mode can be 

expressed as 

?}«Wß;} + [*K, where [4] = -co\   -2Ca>ni 
and [B] = 

(5.6) 

Now, defining 

H} 
gives 

fe}=[4fe}+{B^ (5-7) 

Although Equation (5.7) is in modal coordinates and the coefficients are defined 

differently, it is of exactly the same form as Equation (4.2) in the derivation for the 

standard recursion. Therefore, we can proceed as before to obtain a solution expressed as 

fe(0}=rtJ+{r}F(/) (5.8) 

where [w] = [e^] and {r} = k'M" [I]\B] 

As [*P,] and {r,} are constant for each mode, the solution for the following time 

step is simply 

which leads us to the recursion: 

(5.9) 

19 



I^H^A.)} (5.10) 

F(t + At) = F(x(t + At)) (5.11) 

f(t + At) = [<pjF(t + At) (5.12) 

The key to the synthesis method is in the force term of the recursion. The natural 

frequencies and transition matrix are determined from the linear pre-modification system, 

and are retained when modifications are installed. The force vector includes all forces 

due to installation of modifications as described in Chapter III. Since the recursion is 

performed using the modal equations, which are decoupled, the analysis can be limited to 

the DOF of interest (the c-set), providing substantial savings in computational 

requirements. 

C. COMPLEX FORMULATION 

A complex formulation of the same method has been developed which has certain 

computational advantages over the above real formulation. 

Rearranging Equation (5.6), we can express the i"1 modal equation of motion as 

{qi}+2^„i{q^o)l{qi}=^}T{Fi(t)}=^(t)}, (5.13) 

We will now find the solution in the second order form rather than converting to a state 

equation to obtain a first order ODE. The total solution is (dropping brackets) 

4(0 = <7hom (0 + (Ipart (0 (5 \ 4) 

which for the z'^2 mode is 

20 



qt (0 = e-te> (4 003(04 <)+ B< sin(ad, '))+ I hi ('" T& (^ 

where: 

Ai=% 

G>d, =®«iV
1-^2 

*,(') = — e"^'sin(^0 

The following are now defined: 

[A(0]= 

w4 

?*'    0 

0     e*' 

,     .£»«, .  1 \-j    -j  

.       .fan, .    1 
l + J       J  

(Od., <»d, 

{i}=Li if 

fol W= 

«-ft 

(5.15) 

(5.16.a) 

(5.16.b) 

(5.16.C) 

(5.16.d) 

(5.17A) 

(5.17.D) 

(5.17.C) 

(5.17.d) 

(5.17.e) 

(5.17.f) 
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Using these definitions, 

ql(.t) = {l}T[Li(tj[PiU}+ |{in^('-r)IP,Kv}/;.(r)rfr 
(y .lo.ä) 

A,(0 = {i}r[i,(0Mv} (5.18.b) 

Now, defining 

+ 

few}-*'. 

we have 

(5.19) 

22 



(5.20) 

For up to "n" modes of a system, we can form the following matrices: 

~k(0] 

[1(0]- M] 

[£„(')]. 2nx2n 

fl- 

fe] 
[r2] 

[r„] 2nx2n 

[vh 

w 
{v} 

{v}. 2«xn 

fe>}- 

fc}J 

{*(')}- 

few}" 
few} 

(5.21.a) 

(5.21.b) 

(5.21.C) 

(5.21.d) 

(5.21.e) 

which lead to the total equation: 

{q(t)}= NA}+ l[L(t-r)lPiv}{F(r)]dt 

Since, from Equation (5.4.d) 

{F(o}=Mr{F(0}, 

(5.22) 

23 



we now have 

{?(0}=[rnVfao V {iw - oMr M {nr)}dt 
(5.23) 

We now begin to develop the recursion with the expression for the following time step: 

{q(t + At)} = [L(t + At)}p]{Q0} + |+* [L(t + At- T)}P][VI<Z>]
T

 {f(r)}rfr (5.24) 

Using exponential addition rules and the commutative property, we see that 

[I(r, +t2)] = [L(t} )\L(t2)] = [L(t2 )\Uf,)] (5.25) 

so that 

{q(t + At)} = [l(AOll(oMßo}+ I*** fa^Ol^' - OIPMO]
7

" {F(r)}rfr 

= [l(AOll(OMöo}+ |[l(Ar)Il(/-r)IpH«Df {F(r))rfr+ ... 

... + V   [L(At)\L(t + At- TJIPIV\®Y {F(j)}dz 

= [l(AO]|[l(OMßo}+ Jj[«' - T)lP\vM{F(r)}d^ +... 

... + |+A/ [i(A/)Il(/ + A? - OMK^f (F(r)} (5.26) 

24 



Now, introducing the change of variables 

amt + At-r, (5.27) 

we see that 

dv = -da 

and that when 

r = t, a = At 

r = t + At,a = 0 

If At is assumed small, so that {F(t)} is approximately constant overt:t+At, we can write 

{q(t + A0}= [L(AO]{[£(OMöo}+ fjiUt - r)lPlvl<t>f{F(T)}dr\ +... 

... + £'[L(*)MP¥W {F(t)} (5.28) 

which is 

{q(t+At)} = [L(At)]{g(t)}+[T]{F(t)} (5.29.a) 

where 

r=£[L(*)}io{PlvMT{F(t)} (5.29.b) 

So, the complete recursion is: 

25 



{q(t + At)}^[L(Ai)]{q(t)}+[r]{F(t)} 

{x(t + At)}<=[<qi]{q(t + to)} 

{F(t + At)} <= {F({x(t + At)},{x(t + At)},y(t + At),t)] 

t<=t + At 

(5.30.a) 

(5.30.b) 

(5.30.C) 

(5.30.d) 

For elastic modes, 

[l,(tr)] = e ' a 
eX]a 

For each term of [l,(cr)] in [r], the integral is easily evaluated: 

r e^da = Ye      lo  =Y( l) 

(5.31) 

(5.32) 

Substantial savings are realized by extracting from the [*F] matrix only those DOF 

of interest (the cset). Thus, the matrix becomes c x c as opposed to 2n x 2n. 

Additionally, recognizing that [L] is a diagonal matrix, we can further increase 

computational efficiency by extracting the diagonal terms and dot-multiplying by the 

terms of {g}, rather than performing the full matrix multiplication at each time step. 

26 



VI. RESULTS 

Each formulation of this method was compared to MATLAB's ODE45 function, a 

routine commonly used for the solution of this type of differential equation. Performance 

was compared in the response to a simulated blast loading produced by the MATLAB 

code fBlastForcing .m. The forcing function is shown in Figure (2). 
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Figure 2 

Figure (3) shows the response as computed by the complex synthesis method and 

by ODE45, using 40 DOF. 
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The plots of the two solutions are indistinguishable within the resolution of the 

graph, demonstrating the accuracy of the method. Plots using varying DOF as well as 

using the real synthesis method showed similar correlation. Further comparisons were 

made in order to determine the synthesis method's efficiency as compared to ODE45. 

Efficiency can be measured either in terms of computational time or number of floating 

point operations (flops) required for the solution. For both standards, a ratio was created 

by dividing the time (or number of flops) required by ODE45 by the time (or flops) 

required by the synthesis method. Therefore, a value of unity on the graph indicates the 

two methods are equal, while any value greater than one indicates a factor of 

improvement by the synthesis method. In all cases, this factor was plotted versus the 
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number of degrees of freedom in the model. Figures (4) and (5) compare the real 

formulation of the synthesis method using a linear spring model. 
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As can be seen in Figure (4), ODE45 is actually faster than the synthesis method for 

models with fewer than 300 degrees of freedom. For models of greater than 300 DOF, 

the factor begins a steep climb, and at 500 DOF the synthesis is slightly more than twice 

as fast. As will be discussed later, all time estimates are very conservative due to the 

adaptive quadrature utilized by ODE45. 
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Figure 5 

Figure (5) shows the flops required for the same comparison run. Here, the savings are 

very noteworthy. For the smallest model tested (four DOF) ODE45 required more than 

10 times as many flops. At 500 DOF, ODE45 required well over 600 times more flops. 

Again, even this result is conservative due to ODE45's adaptive quadrature. Of great 

importance is the fact that in these figures, as well as those which follow, the factor of 

improvement increases with the number of DOF. Thus, for a full-sized model, the 

savings could potentially be several orders of magnitude. 
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The next comparison performed dealt with the complex formulation of the 

synthesis. Again, the isolator was modeled as a linear spring with proportional damping. 

As shown in Figure (6), the time savings are more dramatic than with the real 

formulation. At four DOF, the synthesis is nearly ten times faster than ODE45, while at 

400 DOF it is over 115 times faster. 
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Figure (7) shows that savings in operation count are similar, with five times fewer 

flops at four DOF, and 105 times fewer at 400 DOF. 
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The final trial again compared the complex formulation to ODE45. In this case, 

the isolator was modeled as a nonlinear spring with proportional damping to more 

accurately approximate an actual isolator. The nonlinearity was imposed using the 

function flVonlinearSpring.m, which provides an interpolated lookup table of stiffness 

versus deflection. The force versus distance produced by ftJonlinearSpring.m is shown in 

Figure (8). The response obtained by the complex synthesis method compared with 

ODE45 for 40 DOF is shown in Figure (9), demonstrating its accuracy. Again, the result 

was unaffected by number of DOF or by which synthesis formulation was used. 
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In Figure (10), the plot of time factor versus DOF, it can be seen that ODE45 is again 

faster for smaller models, but the synthesis becomes faster at less than 100 DOF. For 400 

DOF, the synthesis is over four times as fast. 
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In terms of operational count, the savings are again significant, with ODE45 requiring 45 

times more flops at 400 DOF, as seen in Figure (11). 
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VII. CONCLUSIONS 

The second order nonlinear synthesis method works, as can be seen by the 

accuracy of the method compared to the response generated by ODE45. 

Additionally, the method allows potentially huge savings in computational 

requirements. The complex formulation produces exceptionally dramatic time savings 

due to the use of diagonal matrices. As previously alluded to, all comparisons in this 

study are very conservative. ODE45 uses adaptive quadrature in solving the system of 

equations. This means that, if the function is not changing value significantly within each 

time step, the length of the time step is increased, thereby reducing the total number of 

evaluations required. The synthesis method as implemented in these comparisons does 

not employ adaptive quadrature, although the method lends itself well to such a scheme. 

With adaptive quadrature installed, the synthesis method is expected to show even more 

dramatic results for all sizes of FE model. 

Finally, the factor of improvement in all cases is seen to increase with increasing 

number of DOF. This is compounded by the adaptive quadrature issue discussed above, 

but will still be evident with adaptive quadrature installed. Due to the reduced size of 

matrices involved in the synthesis, the savings will be much more pronounced in a FE 

model of a size more representative of an actual building. 
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VIII. RECOMMENDATIONS FOR FUTURE WORK 

The real modal formulation of the synthesis, while extremely efficient in terms of 

flop count, is less impressive in its time savings. This is likely due to the current 

programming routine, which involves nested loops for the solution of the differential 

equation. If the same method can be programmed with fewer loops, the time savings 

should improve commensurately. 

Further comparisons should be conducted using a more realistic representation of 

the actual base isolators. In the final trials, a nonlinear spring was used in conjunction 

with proportional damping. Currently available routines could be easily implemented 

which model the actual performance of base isolators very accurately. This would allow 

definitive predictions of savings available through the use of the new synthesis method as 

applied to earthquake isolation. 

Finally, adaptive quadrature should be included in the synthesis method. An 

obvious next step, this would be a straightforward modification to the routine, which 

would provide an even basis for direct comparisons with other methods. 
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APPENDIX A:   MATLAB  CODE  FOR REAL  FORMULATION OF 

RECURSIVE   SYNTHESIS WITH  LINEAR  SPRING 

%  realsynth.m - Real  formulation of recursive  synthesis 
% method,   using 3-d matrices.     Uses  linear spring for 
% base  isolator 
g. 

clear 
plotme=l;       compare=l; 
j  = sqrt(-1) ; 
global Amod B Yo  k c  kb odeforce tode 

% TIME  STEPPING: 

start_t = 0.0; 
dt =0.05; 
end_t       = 20; 
time    =   [start_t:dt:end_t]; 
n.step = length(time); 

Time points 
%     No.   Time points 

Describe  spring-mass  system: 
cset =   [1] ; 
kel=10000*ones(1,500); %elemental stiffness 
mel=20000*ones(length(kel));%elemental mass 
ndof=length(kel); 

k =  zeros(ndof);     m =  zeros(ndof);     c =  zeros(ndof); 
%  Populate   [k],[c],[m] 
k(ndof, ndof)   = kel(ndof); m(ndof, ndof)   = mel(ndof); 
for i  =  l:ndof-l; 
k(i,i)   =  kel(i)   +  kel(i+l);        k(i,i+l)   = -kel(i+l); 
k(i+l,i)   =  -kel(i+l); 
m(i,i)   = mel(i); 

end 

%  Calculate the normal modes and natural frequencies, and mass 
normalize 
%  the eigenvectors.  Sort the eigenvalues/vectors by ascending 
%  natural frequency, 
[phi,lam] = eig(m\k); 
mtilda = phi'*m*phi; 

for i = l:ndof 
phi(:,i) = phi(:,i)*l/(sqrt(mtilda(i, i))); 
end 

%  Sort the eigenvalues in ascending order. 
ev=(diag(lam))'; 
[lam,p]=sort(ev); 
lamstar = diag(lam); 
phistar = phi; 
for b = l:ndof 
phi(:,b) = phistar(:,p(b)) ; 
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end 
Wn = sqrt(lam); % Radian natural frequencies 
freqs = Wn/2/pi; % Hz 
Zeta = 0.0; 
ZetaWn = Zeta.*Wn; 
Wd = Wn .* (1 - Zeta.A2)A.5; 

%      
e-e-e-e.5'9-e'S-&2-2-e-2-9-9-S-S-S-9-&S-9-2-5-S-2-^9-S-S-9-S-5-&2-&-5-2-9-2-5-5-$-9-e-2'S-2-2.& t)-6t>i5'6^>1515'6^>i5t>t>1S^>t>'oi5'o1515^15 o ^ "o ^ ^ 15 0ti'o'o'o'o'6'ot>'o15'o'o'o1S"o"ö"6i5i51S 

numRmodes  =0;       % number of rigid body modes 
numEmodes  = length(lam); % number of elastic modes 
phiE = phi; 

%                      SET UP RECURSION: 
%     

%                      ELASTIC MODES 
%   ~~ 

PsiE  = zeros(2,2,numEmodes); % Build 3-dimensional PsiE and 
GammaE matrices 

GammaE     = zeros(2,1,numEmodes); 

for icntEmodes = 1 : numEmodes;     % Will reference elastic 
modes only 

Ae   = [0 1;-(Wn(icntEmodes)) A2 -2*Zeta*Wn(icntEmodes)]; 
PsiE(:,:,icntEmodes)    = expm(dt*Ae); 
GammaE(:,:,icntEmodes)=Ae\[PsiE(:,:,icntEmodes)- 

eye(2)]*[0;l]; 
end 

%    Setup forcing function (base displacement): 
Yo = 1.0; % Amplitude 
[y_of_t] = fBlastForcing(Yo,time', 'bist', 0); 

%    [y_of_t] = ones(l,nstep); 

%    Initialize force vector for iteration: 
f = zeros(l,nstep); 
kb = 15000; 
kc=.l*kb; 

qE   = zeros(2,1,numEmodes); 
x    = zeros(2*length(cset),nstep); 

%                     RECURSION 
%   
start=flops; 
tic 
for i=l:numEmodes 
tempi(:,i)=GammaE(:,: ,i)*phiE(cset, i) ' ; 

end 

for icnt_tstep = 1 : nstep-1; 
for icntEmodes = 1 : numEmodes; 
qE(:,:, icntEmodes)=PsiE(:,:,icntEmodes)*qE(:,:, icntEmodes) 
+templ(:,icntEmodes)*f(icnt_tstep); 
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x(:,icnt_tstep)=x(:,icnt_tstep)+phiE(cset,icntEmodes)*qE(:, :, icntEmodes 
); 
end 
f(icnt_tstep+l)=-kb*(x(1,icnt_tstep)-y_of_t(icnt_tstep))-... 
kc*x(2, icnt_tstep)+kel(1)*x(1,icnt_tstep); 

end 
for icntEmodes = 1 : numEmodes; 
qE(:, :, icntEmodes)=PsiE(:,:,icntEmodes)*qE(:, :, icntEmodes)... 
+GammaE(:, :,icntEmodes)*phiE(cset,icntEmodes)'*f(nstep); 

x(:,nstep) = x(:,nstep)+phiE(cset,icntEmodes)*qE(:, :, icntEmodes); 
end 
toe 
synthflops=flops-start 

ODE45 COMPARISON 

if compare==l 
start=flops; 
tic 
kchkel=10000*ones (size(kel)); %elemental stiffness 
kchkel(l)=kb; 
for i = l:ndof-l; 
kchk(i,i) = kchkel(i) + kchkel(i+1);    kchk(i,i+l) = -kchkel(i+1); 
kchk(i+l,i) = -kchkel(i+1); 

end 
kchk(ndof,ndof)=kchkel(ndof) ; 
cchkel=zeros(size(kel)); %elemental damping 
cchkel(l)=kc; 
for i = l:ndof-l; 
cchk(i,i) = cchkel(i). + cchkel(i+1);    cchk(i,i+l) = -cchkel(i+1); 
cchk(i+l,i) = -cchkel(i+1); 

end 
cchk(ndof,ndof)=cchkel(ndof) ; 
Amod = zeros(2*ndof); 

odeforce=[]; 
tode=[]; 
Amod(1:ndof,ndof+l:2*ndof) = eye(ndof); 
Amod(ndof+l:2*ndof,ndof+l:2*ndof) = -m\cchk; 
B = zeros(2*ndof,ndof); 
B(ndof+l:2*ndof,:) =inv(m); 
Amod(ndof+l:2*ndof,l:ndof) = -m\kchk; 

xode = zeros(2*ndof,nstep); 
xss = zeros(2*ndof,nstep) ,• 
[Time,Xode]=ode23('vibemdof',time,xode(:, 1) ) ; 
odeflops=flops-start 
xode=Xode'; 
toe 
end 
t>^5?'6'6'6"6i5'oo'o'öo'oo-5i5'o« 0-Q 0^ Q-Q 0-g 0-g ©^^^^^^"o"© 

if plotme==l 
figure(1) 
plot(time,x(l,:),'—',time,xode(1,:)) 
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legend('X_s_y_n_t_h','X_0_D_E' 
%grid 
title('Displacement vs Time') 
xlabel( "Time (Seconds)') 
ylabel('Displacement') 

end 
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APPENDIX B: MATLAB CODE FOR COMPLEX FORMULATION OF 

RECURSIVE SYNTHESIS WITH LINEAR SPRING 

% Backdiffl.m - Complex formulation of recursive synthesis 
% method using backward differencing method to obtain velocity. 
% Includes linear spring modification 

clear 
j = sqrt(-1); 
global Amod B Yo k c kb 
plotme=l; compare=l; 

TIME STEPPING: 

start_t = 0.0; 
dt   = 0.05; 
end_t  =20; 
time = [start_t:dt:end_t]';       %  Time points 
nstep = length(time); % No. Time points 

% 
%       Describe spring-mass system: 
cset = [1]; 
kel=10000*ones(1,4); %elemental stiffness 
mel=20000*ones(length(kel));%elemental mass 
ndof=length(kel) ; 
%    

k = zeros(ndof);  m = zeros(ndof);  c = zeros(ndof); 
% Populate [k],[c], [m] 
k(ndof,ndof) = kel(ndof);    m(ndof,ndof) = mel(ndof); 
for i = l:ndof-l; 
k(i,i) = kel(i) + kel(i+l);   k(i,i+l) = -kel(i+l); 
k(i+l,i) = -kel(i+l) ; 
m(i,i) = mel(i); 
end 

% Calculate the normal modes and natural frequencies, and mass 
normalize 
%  the eigenvectors.  Sort the eigenvalues/vectors by ascending 
%  natural frequency, 
[phi,lam] = eig(m\k); 
mtilda = phi'*m*phi; 

for i = l:ndof 
phi(:,i) = phi(:,i)*l/(sqrt(mtilda(i,i))); 
end 

%  Sort the eigenvalues in ascending order. 
ev=(diag(lam))'; 
[lam,p]=sort(ev); 
lamstar = diag(lam); 
phistar = phi; 
for b = l:ndof ' 
phi(:,b) = phistar(:,p(b)); 
end 
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Wn = sqrt(lam); % Radian natural frequencies 
freqs = Wn/2/pi; % Hz 

Zeta = 0.0; 
ZetaWn = Zeta.*Wn; 
Wd = Wn .* (1 - Zeta.A2)".5; 

% SET UP RECURSION FOR ELASTIC MODES 
o 

phiE=phi; 
numEmodes=ndof; % for test structure - no rigid body modes 

P = zeros(2*numEmodes,2*numEmodes); 
Ve = zeros(2*numEmodes,numEmodes); 
Vcol       = 0; 
icntEmodes = 0; 

for icntModes =1:2: (2*numEmodes-l);  % Will reference 
% elastic modes only 
icntEmodes = icntEmodes +1; % Start at first 

% elastic mode 
% Build diagonal vector of (non-zero) eigenvalue complex 
%    conjugates (2n * 1) 
lame(icntModes)   = -ZetaWn(icntEmodes) + j * Wd(icntEmodes) ; 
lame(icntModes+1) = -ZetaWn(icntEmodes) - j * Wd(icntEmodes); 
gammac(icntModes) = (exp(lame(icntModes)*dt)-1)/lame(icntModes); 
garnmac(icntModes+1)=(exp(lame(icntModes+1)*dt)-1)/lame(icntModes+1); 

%    Build Tridiagonal P matrix and Quasi-Block Diagonal V matrix: 
ij = [icntModes icntModes+1]; % Indices for comp conj pair 
tempi = j*ZetaWn(icntEmodes)/Wd(icntEmodes);r 

P(ij,ij) = 0.5 * [(1-templ) (-j/Wd(icntEmodes));... 
(templ+1) (j/Wd(icntEmodes))]; 

Vcol = Vcol+1; 
Ve(ij,Vcol) = [0;1]; 
one (ij,Vcol) = [1;1]; 

end 
Le = diag(exp(lamc*dt));% Diagonal matrix of complex conjugate 

eigenvals 
GammaEx = diag(gammac); % Integral of Le over dt 
GammaE = GammaEx * P * Ve * phiE(cset,:)'; 

%    Set up forcing function (base displacement): 
Yo = 1.0; % Amplitude 
[y_of_t] = fBlastForcing(Yo,time', 'bist', 0); 

%    Initialize vectors for iteration: 
f = zeros(l,nstep); 
kb = 15000; 
kc=.l*kb; 
qE = zeros(2*numEmodes,1);% Non-reduced 

X=zeros(l,nstep); 
temp2=phiE(cset,:) * one'; 

Le vector=diag(Le); 
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% RECURSION 

start=flops; 
tic 
qE  = Le_vector.* qE+GammaE*f(1); 
X(l) = temp2 * qE; 
Xdot=X(l)/dt; 
f(2)=-kb*(X(1)-y_of_t(1))-kc*Xdot+kel(1)*X(1); 

for icnt_tstep = 2 : nstep-1; 
qE  = Le_vector.* qE+GammaE*f(icnt_tstep); 
X(icnt_tstep) = temp2 * qE; 
Xdot=(X(icnt_tstep)-X(icnt_tstep-l))/dt; 
f(icnt_tstep+l}=-kb*(X(icnt_tstep)-y_of_t(icnt_tstep))-. 
kc*Xdot+kel(1)*X(icnt_tstep); 

end 
qE   = Le  * qE  + GammaE  *f(nstep); 
X(nstep) = phiE(cset,:) * one' * qE; 
toe 
synthflops=flops-start 

% ODE45 COMPARISON 

if compare==l 
start=flops; 
tic 
kchkel=10000*ones{size(kel)); %elemental stiffness 
kchkel(l)=kb; 
for i = l:ndof-l; 
kchk(i,i) = kchkel(i) + kchkel(i+l);    kchk(i,i+l) = -kchkel(i+1); 
kchk(i+l,i) = -kchkel(i+1); 

end 
kchk(ndof,ndof)=kchkel(ndof) ; 
cchkel=zeros(size(kel)); %elemental damping 

cchkel(l)=kc; 
for i = l:ndof-l; 
cchk(i,i) = cchkel(i) + cchkel(i+l);    cchk(i,i+l) = -cchkel(i+1); 
cchk(i+l,i) = -cchkel(i+1); 

end 
cchk(ndof,ndof)=cchkel(ndof); 
Amod = zeros(2*ndof); 
Amod(l:ndof,ndof+l:2*ndof) = eye(ndof); 
Amod(ndof+l:2*ndof, ndof+l:2*ndof) = -m\cchk; 
B = zeros(2*ndof,ndof); 
B(ndof+l:2*ndof,:) = inv(m); 
Amod(ndof+1:2*ndof,lrndof) = -m\kchk; 
xode = zeros(2*ndof,nstep); 
[Time,Xode]=ode23('fvibemdof',time, xode(:, 1) ) ; 
odeflops=flops-start 
xode=Xode'; 
toe 
end 

'O'O'O"O"O'OT>"0"O"O'O'O'O o ^ "o o "o o"o o "o "o "o o'o"o"o'o15'o"o'615"o'o'o'o 

if plotme==l 
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figure(1) 
plot(time,X,'—',time,xode(1,:)) 
legend('X_s_y_n_t_h','X_0_D_E') 
title('Displacement vs Time') 
xlabel( "Time (Seconds)') 
ylabel('Displacement') 

end 
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APPENDIX C: MATLAB CODE FOR COMPLEX FORMULATION OF 

RECURSIVE SYNTHESIS WITH NONLINEAR SPRING 

% Backdiff2.m - Complex formulation of recursive Synthesis 
% method using backward differencing to obtain velocity 
% fNonlinearspring used for modification 

clear 
j = sqrt(-1) ; 
global Amod B Yo k c kb 
plotme=l; compare=l; 

%                      TIME STEPPING: 
%   

start_t = 0.0; 
dt   = 0.05; 
end_t  =20; 
time  = [start_t:dt:end_t]';       %  Time points 
nstep = length(time); % No. Time points 

%      
% Describe spring-mass system: 

cset =,[1] ; 
kel=10000*ones (1,4); %elemental stiffness 
mel=20000*ones(length(kel));%elemental mass 
ndof=length(kel); 
Q.      _____„______ — — — —._ — — — — .- — — .- — — —— 

k = zeros(ndof);  m = zeros(ndof);  c = zeros(ndof); 
% Populate [k],[c],[m] 
k(ndof,ndof) = kel(ndof);    m(ndof,ndof) =mel(ndof); 
for i = l:ndof-l; 

• k(i,i) = kel(i) + kel(i+l);   k(i,i+l) = -kel(i+l); 
k(i+l,i) = -kel(i+l); 
m(i,i) = mel(i); 
end 

% Calculate the normal modes and natural frequencies, and mass 
normalize 
%  the eigenvectors.  Sort the eigenvalues/vectors by ascending 
%  natural frequency, 
[phi,lam] = eig(m\k); 
mtilda = phi'*m*phi; 

for i = l:ndof 
phi(:,i) = phi (:,i)*l/(sqrt(mtilda(i,i))); 
end 

% Sort the eigenvalues in ascending order. 
ev=(diag(lam))'; 
[lam,p]=sort(ev); 
lamstar = diag(lam); 
phistar = phi; 
for b = l:ndof 
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phi(:,b) = phistar(:,p(b)); 
end 
Wn = sqrt(lam); % Radian natural frequencies 
freqs = Wn/2/pi; % Hz 

Zeta = 0.0; 
ZetaWn = Zeta.*Wn; 
Wd = Wn . * (1 - Zeta.A2)A.5; 

%                      SET UP RECURSION: 
%   

% ELASTIC MODES 
%  ~  
phiE=phi; 
numEmodes=ndof; % for test structure - no rigid body modes 

P = zeros(2*numEmodes,2*numEmodes); 
Ve = zeros(2*numEmodes,numEmodes); 
Vcol       = 0; 
icntEmodes = 0; 

for icntModes =1:2: (2*numEmodes-l);  % Will reference 
% elastic modes only 
icntEmodes = icntEmodes +1; % Start at first 

% elastic mode 
% Build diagonal vector of (non-zero) eigenvalue complex 
%    conjugates (2n * 1) 

lame(icntModes)     = -ZetaWn(icntEmodes) + j * Wd(icntEmodes); 
lamc(icntModes+l) = -ZetaWn(icntEmodes) - j * Wd(icntEmodes); 
gammac(icntModes) = (exp(lame(icntModes)*dt)-1)/lame(icntModes); 
gammac(icntModes+l)=(exp(lame(icntModes+1)*dt)- 

1)/lame(icntModes+1) ; 

% Build Tridiagonal P matrix and Quasi-Block Diagonal V 
matrix: 

ij = [icntModes icntModes+1]; % Indices for comp conj pair 
tempi = j*ZetaWn(icntEmodes)/Wd(icntEmodes); 

P(ij,ij) = 0.5 * [(1-templ) (-j/Wd(icntEmodes));... 
(templ+1) (j/Wd(icntEmodes))]; 

Vcol = Vcol+1; 
Ve(ij,Vcol) = [0;1]; 
one(ij,Vcol) = [1;1]; 

end 
Le = diag(exp(lamc*dt));% Diagonal matrix of complex conjugate 

eigenvals 
GammaEx = diag(gammac); % Integral of Le over dt 
GammaE = GammaEx * P * Ve * phiE(cset,:)'; 

Set up forcing function (base displacement): 
Yo = 1.0; % Amplitude 
[y_of_t] = fBlastForcing(Yo,time', 'bist', 0); 

Initialize vectors for iteration: 
f = zeros(l,nstep); 
kb = 15000; 
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kc=0*kb; 
qE = zeros(2*numEmpdes,1);% Non-reduced 
X=zeros (1,nstep); 
temp2=phiE(cset,:) * one'; 

Le_vector=diag(Le); 
% RECURSION 

start=flops; 
tic 
qE  = Le_vector.* qE+GammaE*f(1); 
X(l) = temp2 * qE; 
Xdot=X(l)/dt; 
f(2) =-fNonlinearSpring(X(1)-y_of_t(1),0)-kc*Xdot+kel(1)*X (1) ; 

for icnt_tstep = 2 : nstep-1; 
qE  = Le_vector.* qE+GammaE*f(icnt_tstep); 
X(icnt_tstep) = temp2 * qE; 
Xdot=(X(icnt_tstep)-X(icnt_tstep-l))/dt; 
f (icnt_tstep+l) =-fNonlinearSpring (X (icnt_tstep) -... 

y_of_t(icnt_tstep),0)- kc*Xdot+kel(1)*X(icnt_tstep); 
end 
qE   = Le  * qE  + GammaE  *f(nstep); 
X(nstep) = phiE(cset,:) * one' * qE; 
toe 
synthflops=flops-start 

%                     ODE45 COMPARISON 
%   

if compare==l 
start=flops; 
tic 
kchkel=10000*ones(size(kel)); %elemental stiffness 
kchkel(l)=0; 
for i = l:ndof-l; 
kchk(i,i) = kchkel(i) + kchkel(i+l);    kchk(i,i+l) = -kchkel(i+1); 
kchk(i+l,i) = -kchkel(i+1); 

end 
kchk(ndof,ndof)=kchkel(ndof) ; 
cchkel=zeros(size(kel)); %elemental damping 

cchkel(1)=kc; 
for i = l:ndof-l; 
cchk(i,i) = cchkel(i) + cchkel(i+1);    cchk(i,i+l) = -cchkel(i+1); 
cchk(i+l,i) = -cchkel(i+1); 

end 
cchk(ndof,ndof)=cchkel(ndof) ; 
Amod = zeros(2*ndof); 

Amod(l:ndof,ndof+l:2*ndof) = eye(ndof); 
Amod(ndof+l:2*ndof,ndof+l:2*ndof) = -nAcchk; 
Amod(ndof+l:2*ndof,1:ndof) = -m\kchk; 
B = zeros(2*ndof,ndof); 
B(ndof+l:2*ndof,:) = inv(m); 
xode = zeros(2*ndof,nstep); 
[Time,Xode]=ode45('fvibemdof2',time,xode(:,1)); 
odeflops=flops-start 
xode=Xode'; 
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toe 
end 

^l5<5tit>t>'6t>'6'6x>'6'6^>'6^>^>T5'o'o'o^ooooooooo^oooooo 

if plotme==l 
figure(1) 
plot(time,X,'—',time,xode(1,:)) 
legend('X_s_y_n_t_h','X_0_D_E') 
title('Displacement vs Time1) 
xlabel( "Time (Seconds)') 
ylabel('Displacement') 

end 
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APPENDIX D: FUNCTIONS CALLED BY ABOVE CODES 

function [f_of_t,fdot] = fBlastForcing(Fo,time, type, plotit); 
D 
o 

D 
%    Usage: [f_of_t,fdot] = fBlastForcing(Fo,time, type, plotit); 
D 
% 
D 
%    Choices: sine  bist   step 
D 

type = 'step'  STRING Variable 
a 
g. 
o 

D 
% 
D 
% 
D 
% 
D 
% 
Q. 

%   This function returns a forcing function which is 
%   a "blast" function. 

If use 'sine', fdot also returned. 

%        F(t) = Fo * ( exp(-at) - exp(-bt) ) 
% 
% where a and b are constants which shape the blast, 
% and Fo is the amplitude of the blast. 
o. 
"o 

%    The variable "plotit" is a switch which if set to an 
%    integer greater than 0 will cause f(t) to be plotted, 
%    in the figure window with that number, i.e. figure(plotit). 
%    if set to anything else, will not plot. 

% Choices: sine  bist   step 

%  type = 'step'; 

if type == 'bist'; 

disp(' Blast forcing used...') 
a = 2.0; 
b = 5.0; 
f_of_t = Fo * ( exp(-a*time) - exp(-b*time) ); 

fdot = Fo * (-a* exp(-a*time) + b*exp(-b*time) ); 

elseif type == 'step'; 

disp(' Step forcing used...') 



f_of_t = Fo * ones(size(time)); 
fdot = []; 

elseif type == 'sine'; 

disp(' Sine forcing used...') 
W = 1; % Hertz 

disp(sprintf(' Freq (Hz): %5.1f',W)) 
f_of_t = Fo * sin(2*pi*W*time); 

fdot  = Fo * (2*pi*W)*cos(2*pi*W*time); 

end; 

if plotit > 0; 
figure(plotit) 

if type == 'sine'; 
plot(time,f_of_t,time,fdot) ;grid 

elseif type == 'bist'; 
plot(time,f_of_t,time,fdot);grid 

else 
plot(time,f_of_t);grid 
end 

end 

% End function. 
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function[fofx]=fNonlinearSpring(xin,klinfit,plotit); 

skip='y'; 
if skip~='y 1 

xvsf=[0. 0     0.0; 
0.1 100.0; 
0.2 200.0; 
0.3 300.0; 
0.4 400.0; 
0.5 500.0; 
0.6 580.0; 
0.7 640.0; 
0.8 700.0; 
0.9 740.0; 
1.0 760.0; 
1.1 780.0; 
1.2 790.0; 
1.3 800.0; 
1.4 805.0; 
1.5 807.5; 
1.6 808.75; 
1.8 809.0; 
10.0 850.0; 
100.0 1000.0 
190.0 1150.0 
280.0 1300.0 
370.0 1450.0 
460.0 1600.0 
550.0 1750.0 
640.0 1900.0]; 

end 
xvsf=[0.0 0.0; 

0.1 200.0; 
0.2 400.0; 
0.3 600.0; 
0.4 780.0; 
0.5 960.0; 
0.6 1140.0 
0.7 1320.0 
0.8 1500.0 
0.9 1600.0 
1.0 1650.0 
1.1 1700.0 
1.2 1740.0 
1.3 1750.0 
1.4 1760.0 
1.5 1765.0 
1.6 1770.0 
1.8 1770.0 
10.0 1770.0 
100.0 1770.0 
1000.0 1780.0 
1900.0 1790.0 
2800.0 1800.0 
3700.0 1810.0 
4600.0 1820.0 
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5500.0 1830.0 
6400.0 1840.0 
7300.0 1850.0 
8200.0 1860.0 
9100.0   1870.0; 

10000.0     1880.0]; 

num_pts=length(xvsf) ; 

[x,f]=fXYreflect(xvsf(:,1),xvsf(:,2) ) ; 

if  klinfit>0; 
flinfit=klinfit*xvsf(:, 1) ; 
[x, flinfit]=fXYreflect (xvsf (:, 1), fünf it) ; 
fdif=f-flinfit; 

else 
fdif=zeros(size(f))' ; 
flinfit=zeros(size(f)) '; 

end 

fofx=interpl(x,f,xin); 

if nargin==3; 
plot(x,f,'r',x,flinfit,'g',x,fdif,'y')/grid;figure(gcf) 
title('Nonlinear Spring(red)-Linear Fit Spring(grn)- 

Difference(yel)') 
xlabel('Deflection (in)') 
ylabelC Force (lbf) ') 

end 
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function [xreflect,yreflect] = fXYreflect(x,y); 
% fXYreflect.m 
%       % 
% Usage:    [xreflect,yreflect] = fXYreflect(x,y) ; % 
%  This function creates a new set of x,y data from a given set of x,y 
data. 
%  The vectors x and y are inputted, and these data are reflected about 
%  the y axis. The new data xreflect,yxreflect contains both the 
original 
% and the reflected data, and hence the new vectors are of length 
% 2 * length(x) - 1 
%  The function requires that the x vector start at zero 
%  length(x) == length(y) % 
%  

if length(x) == length(y) & x(l) == 0; 
num_pts = length(x); 
xreflect(l:num_pts) = -flipud(x); 
xreflect(num_pts+l:2*num_pts-l) = x(2:num_pts); 
yreflect(l:num_pts) = -flipud(y); 
yreflect(num_pts+l:2*num_pts-l) = y(2:num_pts); 

end 
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%fvibemdof.m 
% Used for ODE comparison - Linear spring modification 
function xdot=fvibemdof(t,x) 
global Amod B Yo k c kb 
ndof=length(Amod)/2; 
Force=zeros(ndof,1); 
b = 5.0; 
a=2.0; 
F_of_t=Yo*(exp(-a*t)-exp(-b*t)); 
fdot = Yo*(-a*exp(-a*t)+b*exp(-b*t)); 
Forced) = kb*F_of_t; 
xdot=zeros(size(x)); 
xdot=Amod*x+B*Force; 
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% fvibemdof2.m 
% Used for ODE comparison with fNonlinearSpring 
function xdot=fvibemdof2(t,x) 
global Amod B Yo k c kb 
ndof=length(Amod)/2; 
Force=zeros(ndof,1); 
b = 5.0; 
a=2.0; 
F_of_t=Yo*(exp(-a*t)-exp(-b*t)); 
fdot = Yo*(-a*exp(-a*t)+b*exp(-b*t)); 
Force(l) = -fNonlinearSpring(x(l)-F_of_t,0); 
xdot=zeros(size(x)); 
xdot=Amod*x+B*Force; 
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